Dissecting the biology of lymphedemadistichiasis

Tatiana Petrova University of Lausanne and CHUV, Switzerland

The lymphatic system

Aspelund et al, 2016, Circ Res

(c) Encyclopaedia Britannica, Inc.

Functions of lymphatic vasculature

Interstitial fluid balance

Returning excess interstitial fluid to the blood circulation

Lipid transport

Absorption of fat and fat-soluble vitamins from the digestive tract

Immune surveillance

Carrying antigen and antigen-presenting cells

Maby-El Hajjami and Petrova, 2008, Histochem Cell Biol

Lymphatic vasculature and human diseases

Primary and secondary lymphoedema

- 140 million cases worldwide
- Highly underestimated cause of disability comparable to Crohn's disease

Rare disease of lymphatic vessels **PRIMARY LYMPHEDEMA**

- Chronic excessive tissue swelling
- Rare disease 1:6'000
- Autosomal dominant
- Affects up to 300'000 patients in Europe
- High morbidity

- Prone to infections
- Fibrosis
- Fat accumulation
- Sometimes lethal (lymphangiosarcoma, pulmonary edema or protein-loosing enteropathy)

Rare disease of lymphatic vessels **PRIMARY LYMPHEDEMA**

- Chronic excessive tissue swelling
- Rare disease 1:6'000
- Autosomal dominant
- Affects up to 300'000 patients in Europe
- High morbidity

- Prone to infections
- Fibrosis
- Fat accumulation
- Sometimes lethal (lymphangiosarcoma, pulmonary edema or protein-loosing enteropathy)

SECONDARY LYMPHEDEMA

- Lymph node resection is the main cause
- Up to 30% of breastcancer patients (350'000 individuals in Europe)
- Other cancers...

 May take several years to develop

Genetic component?

Rare disease of lymphatic vessels **PRIMARY LYMPHEDEMA**

Different subtypes of hereditary lymphedema

- 20 causative genes are identified so far
- Example: Milroy's disease
 - -> mutations in VEGFC and VEGFR3
 - -> congenital lymphedema
 - -> Chy mouse model with mutations in Vegfr3
 - -> hypoplastic cutaneous lymphatic vessels
 - -> Adeno-VEGFC therapy re-grows lymphatic vessels and

restores lymphatic flow

Karkkainen et al, 2001, PNAS

-> Lymfactin (AdVEGFC) is in clinical trial to treat secondary lymphedema (Herantis Pharma)

Lymphedema-distichiasis

- Autosomal dominant disease with reduced penetrance
- Late onset lymphedema (av.13 years old)
- Distichiasis double row of eyelashes

- anomalous pulmonary venous connections
- patent ductus arteriosus

Johnson et al., 1999, Arch. Dermatol.

Lymphatic vessels in LD

- Normal (Brice et al., 2002) or hyperplastic (Johnson et al, 1999)
- Lymphoscintigram shows reflux of tracer (Brice et al., 2002)
- Lymph node hyperplasia

Forkhead transcription factor FOXC2

- Highly conserved 100 aa fork head DNA binding domain
- Expressed in lymphatic EC, especially in lymphatic valves
- Multiple mutations cause lymphedemadistichiasis

• Finegold *et al.*, 2001

Main questions

- What is the role of FOXC2 in lymphatic vasculature?
- What are the mechanisms underlying the lymphatic vessel dysfunction in LD?

•Can such mechanisms be targeted to improve the lymphatic transport in LD patients?

FOXC2 mutants are transcriptionally inactive

Reporter: 6xFOXC2-luci, 2.5 and 0.5 ug of expression constructs

Mouse mesenteric lymphatic vessels as a model

- Thin 2D-like structure
- Stereotypic location of blood and lymphatic vessels
- Both collecting lymphatic vessel and capillaries

Lymphatic vasculature contains two types of vessels

Lymphatic capillary = fluid/proteins/cells uptake

Collecting vessels = lymph transport

Efficient lymph transport and immune response

What is the role of Foxc2 in the <u>embryonic, postnatal and adult</u> lymphatic vasculature?

Sabine et al, *JCI*, 2015

Foxc2 controls formation of collecting lymphatic vessels during embryogenesis

LYVE-1

E17.5 mesenteric vessels

Agenesis of lymphatic valves in *Foxc2* germline knockout mice

VEGFR-3

E17.5 mesenteric vessels

Petrova et al., Nat Med, 2004 Norrmén et al., J. Cell Biol. 2009

Lymphatic valves prevent lymph backflow

Unidirectional movement of lymph

Agenesis of lymphatic valves leads to inefficient lymph transport

FITC-dextran

WT

Is Foxc2 important for collecting lymphatic vessel maintenance?

Prox I -mOrange2: Friedemann Kiefer
Prox I - CreERT2: Tajia Makinen

Degeneration of lymphatic valves in Foxc2^{lecko} mice

Foxc2 postnatal deletion induces leaky collecting vessels

Bright field

Formation and maintenance of collecting lymphatic vessels and valves

Directional transport of lymph and impermeability of collecting vessels

Analysis of FOXC2 transcriptional network in lymphatic endothelial cells

FOXC2 bound enhancers are enriched in NFAT sites

FOXC2 and NFAT cooperate on composite enhancers

Norrmèn et al. J. Cell Biol., 2009

Calcineurin/NFAT pathway

important in lymphocytes (IL-2), cardiac, skeletal and smooth muscle cells

 control of pro-inflammatory genes in blood endothelial cells downstream of VEGF/VEGFR-2

role in lymphatic vasculature?

NFATcl in lymphatic vessels: nuclear localization and high expression in valves

LV=lymphatic vessel

Genetic analysis of calcineurin/NFAT signaling in lymphatic vascular development

Amelie Sabine

Tamoxifen-inducible inactivation of CnB1:
PDGFβ-iCre^{ERT2} → blood endothelium
VEC-Cre^{ERT2} → blood and lymphatic endothelium
Prox1-Cre^{ERT2} → lymphatic endothelium

Pan-endothelial or lymphatic endothelial deletion of calcineurin prevents lymphatic valve formation

CnB1^{ecKO}

Pecam-1 Prox1

Formation and maintenance of collecting lymphatic vessels and valves

Foxc2

Gene expression analysisGene expression analysis fromafter FOXC2 knockdown in vitroex vivo LECs from Foxc2^{KO}

Connexin 37

Cx37^{-/-} adult mice do not have lymphatic valves

Cx37^{wt}

Сх37^{ко}

VE-cadherin Laminin $\alpha 5$ Foxc2

Foxc2 **Calcineurin/NFAT Connexin37 (+other targets)** Formation and maintenance of collecting lymphatic vessels and valves

Lymphatic valves are frequently located at branching points/bifurcations: role of disturbed flow?

Yan Agalarov

Parallels with atherosclerosis : role of disturbed flow?

DeBakey ME et al. Annals of Surgery 1985

100000

of Surgery 1985

Predilection sites are: curved vessels, bifurcations at side branches Low laminar or oscillatory flow induce atherosclerosis

Analysis of LEC mechanosensory responses in vitro

Parallel plate flow system

Primary human lymphatic endothelal cells

Reversing flow induces expression of Foxc2

In vitro

In vivo

NF

Can we exploit this fundamental knowledge to propose treatment approaches?

Formation and manitenance of collecting lymphatic vessels and valves

Foxc2 inactivation disrupts cell-cell junctions in vitro

Oscillatory shear stress (48h - 4 dyn/cm² - 4sec)

Foxc2 inactivation disrupts cell-cell junctions in vivo

Wildtype

VE-cadherin

VE-cadherin

Targeting vascular leakage in the animal LD model?

Wildtype Foxc2-lecKO Mesentery

Bright field

Pharmacological therapy for treatment of lymphedema-distichiasis

What is the potential of repurposing approved drugs to treat lymphedema?

Therapeutic approach	In vitro	In vivo
ROCK inhibitors	~	X
VE-PTP inhibition	X	
Macrophage recruitment		X
VEGFA driven vascular permeability		X
VEGFC/VEGFR-3 blockade		~

Lab: Esther Bovay Amelie Sabine Cansaran Saygili

Jeremiah Bernier-Latmani Christophe Cisarovsky Suzel Davanture Alejandra Gonzalez Stefanie Hendrikx Borja Luri-Prat Simone Ragusa Celine Beauverd Laureline Wetterwald

<u>Past members</u> Konstantin Ivanov Camilla Norrmèn

FOXC2

Collaborators: Brenda Kwak Friedemann Kiefer

Kari Alitalo Terhi Kärpanen Lydia Sorokin

Marcus Fruttiger Naoyuki Miura Ralf Adams Taija Mäkinen

Mouse model

Sponsors: Swiss National Science Foundation, NCCR Molecular Oncology, Swiss Cancer League, AICR Medic Foundation, Lymphatic Research Foundation, Emma Muschamp Foundation, Leenaards Foundation, Gebert Rüf Foundation

E-Rare